Author:
Wang Haiyan,Chen Jin,Sun Yu,Wang Fengchao,Yang Jing,Zhang Canyun,Kong Jinfang,Li Lan
Abstract
AbstractLead-free halide double perovskite Cs2AgInCl6 has been extensively studied in recent years due to the lead toxicity and poor stability of common lead halide perovskites. In this study, sodium (Na+) and bismuth (Bi3+) doped into Cs2AgInCl6 double perovskite, then Cs2Ag1−xNaxIn1 − yBiyCl6 films with broadband warm-yellow emissions were achieved by the blade coating method. Herein, Na and Bi content were changed as variables at a series of parameter optimization experiments, respectively. In the Cs2Ag1−xNaxIn1 − yBiyCl6 systems, Na+ broke the parity-forbidden transition of Cs2AgInCl6, and Bi3+ suppressed non-radiative recombination. The partial replacement of Ag+ with Na+ ions and doping with Bi3+ cations were crucial for increasing the intensity of the PL emission. The experimental results showed that the photoluminescence quantum yield of the Cs2Ag0.4Na0.6In0.8Bi0.2Cl6 film was 66.38%, which was the highest data among all samples. It demonstrated remarkable stability under heat and ultraviolet conditions. After five thermal cycles, the PL intensity of the Cs2Ag0.4Na0.6In0.8Bi0.2Cl6 film is only reduced to approximately 5.7% of the initial value. After 720 h continuous ultraviolet irradiation, there occurred 31.9% emission decay of the film.
Publisher
Springer Science and Business Media LLC