Early detection of pediatric health risks using maternal and child health data

Author:

Ilin Cornelia

Abstract

AbstractMachine learning (ML)-driven diagnosis systems are particularly relevant in pediatrics given the well-documented impact of early-life health conditions on later-life outcomes. Yet, early identification of diseases and their subsequent impact on length of hospital stay for this age group has so far remained uncharacterized, likely because access to relevant health data is severely limited. Thanks to a confidential data use agreement with the California Department of Health Care Access and Information, we introduce Ped-BERT: a state-of-the-art deep learning model that accurately predicts the likelihood of 100+ conditions and the length of stay in a pediatric patient’s next medical visit. We link mother-specific pre- and postnatal period health information to pediatric patient hospital discharge and emergency room visits. Our data set comprises 513.9K mother–baby pairs and contains medical diagnosis codes, length of stay, as well as temporal and spatial pediatric patient characteristics, such as age and residency zip code at the time of visit. Following the popular bidirectional encoder representations from the transformers (BERT) approach, we pre-train Ped-BERT via the masked language modeling objective to learn embedding features for the diagnosis codes contained in our data. We then continue to fine-tune our model to accurately predict primary diagnosis outcomes and length of stay for a pediatric patient’s next visit, given the history of previous visits and, optionally, the mother’s pre- and postnatal health information. We find that Ped-BERT generally outperforms contemporary and state-of-the-art classifiers when trained with minimum features. We also find that incorporating mother health attributes leads to significant improvements in model performance overall and across all patient subgroups in our data. Our most successful Ped-BERT model configuration achieves an area under the receiver operator curve (ROC AUC) of 0.927 and an average precision score (APS) of 0.408 for the diagnosis prediction task, and a ROC AUC of 0.855 and APS of 0.815 for the length of hospital stay task. Further, we examine Ped-BERT’s fairness by determining whether prediction errors are evenly distributed across various subgroups of mother–baby demographics and health characteristics, or if certain subgroups exhibit a higher susceptibility to prediction errors.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3