Challenges to rutile-based geoscientific tools: low-temperature polymorphic TiO2 transformations and corresponding reactive pathways

Author:

Pinto André Jorge,Sanchez-Pastor Nuria,Callegari Ivan,Pracejus Bernhard,Scharf Andreas

Abstract

AbstractRutile, a common accessory mineral in a wide variety of rocks, is the most stable naturally occurring TiO2 polymorph. The relationship between its trace element composition and formation conditions has provided geoscientists with discriminant tools for fingerprinting geological processes, such as magmatic evolution and subduction zone metamorphism, alongside applications to the study of sediment provenance. In the present work, volcaniclastic rock samples belonging to Fara and Saiq Formations, outcropping in Jebel Akhdar mountains, Oman, are studied with Raman spectroscopy and Electron Microprobe (EMP) aiming: of (i) the identification of different naturally-occurring TiO2 polymorphs, (ii) the evaluation of their trace element contents in relation with hydrothermal alteration features, and (iii) the analysis of the mineral reactive pathways behind the observed textural relationships. Raman investigations demonstrated that interstitial, fine-grained TiO2 corresponds to anatase, whereas rutile occurs as isolated single grains. EMP determinations further revealed that an identified Nb-enrichment in anatase is coupled with a corresponding Nb-depletion in rutile. The combination of the obtained results with petrographic observations enabled unravelling the TiO2 reactive pathways affecting the studied samples. Thus, a coupled polymorphic dissolution-precipitation reaction assisting rutile-to-anatase conversion has been defined, together with the role of Nb in further stabilizing the structure of the lower temperature polymorph. Semi-quantitative thermometric considerations suggest that rutile substrates are likely of magmatic origin, whereas anatase formation is clearly associated with a lower temperature aqueous environment. The gathered results raise fundamental questions concerning the application of commonly used rutile-based geochemical and thermometric tools.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3