Theoretical and mathematical codynamics of nonlinear tuberculosis and COVID-19 model pertaining to fractional calculus and probabilistic approach

Author:

Rashid Saima,Hamidi Sher Zaman,Akram Saima,Raza Muhammad Aon,Elagan S. K.,Alsubei Beida Mohsen Tami

Abstract

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel virus known as coronavirus 2 (SARS-CoV-2) that affects the pulmonary structure and results in the coronavirus illness 2019 (COVID-19). Tuberculosis (TB) and COVID-19 codynamics have been documented in numerous nations. Understanding the complexities of codynamics is now critically necessary as a consequence. The aim of this research is to construct a co-infection model of TB and COVID-19 in the context of fractional calculus operators, white noise and probability density functions, employing a rigorous biological investigation. By exhibiting that the system possesses non-negative and bounded global outcomes, it is shown that the approach is both mathematically and biologically practicable. The required conditions are derived, guaranteeing the eradication of the infection. Sensitivity analysis and bifurcation of the submodel are also investigated with system parameters. Furthermore, existence and uniqueness results are established, and the configuration is tested for the existence of an ergodic stationary distribution. For discovering the system’s long-term behavior, a deterministic-probabilistic technique for modeling is designed and operated in MATLAB. By employing an extensive review, we hope that the previously mentioned approach improves and leads to mitigating the two diseases and their co-infections by examining a variety of behavioral trends, such as transitions to unpredictable procedures. In addition, the piecewise differential strategies are being outlined as having promising potential for scholars in a range of contexts because they empower them to include particular characteristics across multiple time frame phases. Such formulas can be strengthened via classical technique, power-law, exponential decay, generalized Mittag–Leffler kernels, probability density functions and random procedures. Furthermore, we get an accurate description of the probability density function encircling a quasi-equilibrium point if the effect of TB and COVID-19 minimizes the propagation of the codynamics. Consequently, scholars can obtain better outcomes when analyzing facts using random perturbations by implementing these strategies for challenging issues. Random perturbations in TB and COVID-19 co-infection are crucial in controlling the spread of an epidemic whenever the suggested circulation is steady and the amount of infection eliminated is closely correlated with the random perturbation level.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3