Abstract
AbstractAll-optical communication systems are under continuous development to address different core elements of inconvenience. Here, we numerically investigate an all-optical modulator, realizing a highly efficient modulation depth of 22 dB and a low insertion loss of 0.32 dB. The tunable optical element of the proposed modulator is a layer of Al-doped Zinc Oxide (AZO), also known as an epsilon-near-zero transparent conductive oxide. Sandwiching the AZO layer between a carefully designed distributed Bragg reflector and a dielectric metasurface—i.e., composed of a two-dimensional periodic array of cubic Si—provides a guided-mode resonance at the OFF state of the modulator, preventing the incident signal reflection atλ = 1310 nm. We demonstrate the required pump fluence for switching between the ON/OFF states of the designed modulator is about a few milli-Joules per cm2. The unique properties of the AZO layer, along with the engineered dielectric metasurface above it, change the reflection from 1 to 93%, helping design better experimental configurations for the next-generation all-optical communication systems.
Funder
Tarbiat Modares University
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献