Measuring electro-adhesion pressure before and after contact

Author:

Schaller SylvainORCID,Shea HerbertORCID

Abstract

AbstractElectro-adhesion (EA) is a low-power, tunable, fast and reversible electrically-controlled adhesion method, effective on both conducting and insulating objects. Typically, only the electro-adhesive detachment force, i.e., the force required to separate an object from the EA patch, is measured. Here, we report a method that enables comparing the pre-contact EA attachment forces with post-contact EA detachment forces. We observe that pre-contact pressures are 1 to 100 times lower than post-contact detachment pressures, indicating the large role played by surface forces, charge injection, and polarization inertia. We characterize the time-dependence of pre- and post-contact EA forces as a function of the applied voltage waveform, observing that using an AC drive allowing for much faster release than DC operation. We measure both EA forces on conductive and insulating objects, using over 100 different EA patches covering a wide range of electrode dimensions. At 400 V, the EA release pressures for conductive objects range from 1 to 100 kPa, and are 1 to 10 times higher than pre-contact adhesion force. For dielectric objects, release pressures are 1 to 100 higher than pre-contact adhesion pressures. The methodology presented in this paper can enable standardized EA characterization while varying numerous parameters.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rapid De-Electroadhesion With Exponential Decay Alternating Voltages;IEEE Robotics and Automation Letters;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3