Development of Ag0.04ZrO2/rGO heterojunction, as an efficient visible light photocatalyst for degradation of methyl orange

Author:

Iqbal Rana Muhammad Arslan,Akhtar Tehmina,Sitara Effat,Nasir Habib,Fazal Aliya,Rafique Uzaira,Ullah Sharif,Mehmood Adeel

Abstract

AbstractMethyl orange (MO) is mutagenic, poisonous, and carcinogenic in nature, hence, effective methods are required for its degradation. We have synthesized pure ZrO2, Ag-doped ZrO2, and Ag-doped ZrO2/rGO as hybrid photocatalysts by facile hydrothermal method. These photocatalysts were characterized by powder XRD, scanning electron microscopy, EDX, FTIR, photoluminescence, UV–Vis diffuse reflectance (DRS), and Raman spectroscopy. The photodegradation of MO (10 ppm) was studied with pure ZrO2, Ag-doped ZrO2, and Ag-doped ZrO2/rGO (10 mg/100 mL catalyst dosage) photocatalysts at 100 min irradiation time under UV–Visible light. The pH effect and catalyst dosage on photodegradation of MO was investigated. Ag0.04ZrO2/rGO photocatalyst exhibited the maximum photocatalytic degradation of MO (87%) as compared to Ag0.04ZrO2 (60%) and pure ZrO2 (26%). Reusability experiments ensured the excellent stability of photocatalyst after five consecutive experiments. To the best of our knowledge, this is the first report on the facile hydrothermal synthesis of Ag0.04ZrO2/rGO photocatalyst for photocatalytic degradation of methyl orange.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3