Pareto optimization with small data by learning across common objective spaces

Author:

Tan Chin Sheng,Gupta Abhishek,Ong Yew-Soon,Pratama Mahardhika,Tan Puay Siew,Lam Siew Kei

Abstract

AbstractIn multi-objective optimization, it becomes prohibitively difficult to cover the Pareto front (PF) as the number of points scales exponentially with the dimensionality of the objective space. The challenge is exacerbated in expensive optimization domains where evaluation data is at a premium. To overcome insufficient representations of PFs, Pareto estimation (PE) invokes inverse machine learning to map preferred but unexplored regions along the front to the Pareto set in decision space. However, the accuracy of the inverse model depends on the training data, which is inherently scarce/small given high-dimensional/expensive objectives. To alleviate this small data challenge, this paper marks a first study on multi-source inverse transfer learning for PE. A method to maximally utilize experiential source tasks to augment PE in the target optimization task is proposed. Information transfers between heterogeneous source-target pairs is uniquely enabled in the inverse setting through the unification provided by common objective spaces. Our approach is tested experimentally on benchmark functions as well as on high-fidelity, multidisciplinary simulation data of composite materials manufacturing processes, revealing significant gains to the predictive accuracy and PF approximation capacity of Pareto set learning. With such accurate inverse models made feasible, a future of on-demand human-machine interaction facilitating multi-objective decisions is envisioned.

Funder

A*STAR RIE2020 IAF-PP Grant

Data Science and Artificial Intelligence Research Center (DSAIR), School of Computer Science and Engineering, Nanyang Technological University

A*STAR Center for Frontier AI Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bayesian Inverse Transfer in Evolutionary Multiobjective Optimization;ACM Transactions on Evolutionary Learning and Optimization;2024-06-28

2. Inverse Multiobjective Optimization by Generative Model Prompting;2024 IEEE Conference on Artificial Intelligence (CAI);2024-06-25

3. Digital Pareto-front mapping of homogeneous catalytic reactions;Reaction Chemistry & Engineering;2024

4. Bayesian Forward-Inverse Transfer for Multiobjective Optimization;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3