Disulfidptosis-associated lncRNAs predict breast cancer subtypes

Author:

Xia Qing,Yan Qibin,Wang Zehua,Huang Qinyuan,Zheng Xinying,Shen Jinze,Du Lihua,Li Hanbing,Duan Shiwei

Abstract

AbstractDisulfidptosis is a newly discovered mode of cell death. However, its relationship with breast cancer subtypes remains unclear. In this study, we aimed to construct a disulfidptosis-associated breast cancer subtype prediction model. We obtained 19 disulfidptosis-related genes from published articles and performed correlation analysis with lncRNAs differentially expressed in breast cancer. We then used the random forest algorithm to select important lncRNAs and establish a breast cancer subtype prediction model. We identified 132 lncRNAs significantly associated with disulfidptosis (FDR < 0.01, |R|> 0.15) and selected the first four important lncRNAs to build a prediction model (training set AUC = 0.992). The model accurately predicted breast cancer subtypes (test set AUC = 0.842). Among the key lncRNAs, LINC02188 had the highest expression in the Basal subtype, while LINC01488 and GATA3-AS1 had the lowest expression in Basal. In the Her2 subtype, LINC00511 had the highest expression level compared to other key lncRNAs. GATA3-AS1 had the highest expression in LumA and LumB subtypes, while LINC00511 had the lowest expression in these subtypes. In the Normal subtype, GATA3-AS1 had the highest expression level compared to other key lncRNAs. Our study also found that key lncRNAs were closely related to RNA methylation modification and angiogenesis (FDR < 0.05, |R|> 0.1), as well as immune infiltrating cells (P.adj < 0.01, |R|> 0.1). Our random forest model based on disulfidptosis-related lncRNAs can accurately predict breast cancer subtypes and provide a new direction for research on clinical therapeutic targets for breast cancer.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3