Author:
Cross Dónall Eoin,Healey Amy J. E.,McKeown Niall J.,Thomas Christopher James,Macarie Nicolae Adrian,Siaziyu Vincent,Singini Douglas,Liywalii Francis,Sakala Jacob,Silumesii Andrew,Shaw Paul W.
Abstract
AbstractRegional optimisation of malaria vector control approaches requires detailed understanding both of the species composition of Anopheles mosquito communities, and how they vary over spatial and temporal scales. Knowledge of vector community dynamics is particularly important in settings where ecohydrological conditions fluctuate seasonally and inter-annually, such as the Barotse floodplain of the upper Zambezi river. DNA barcoding of anopheline larvae sampled in the 2019 wet season revealed the predominance of secondary vector species, with An. coustani comprising > 80% of sampled larvae and distributed ubiquitously across all ecological zones. Extensive larval sampling, plus a smaller survey of adult mosquitoes, identified geographic clusters of primary vectors, but represented only 2% of anopheline larvae. Comparisons with larval surveys in 2017/2018 and a contemporaneous independent 5-year dataset from adult trapping corroborated this paucity of primary vectors across years, and the consistent numerical dominance of An. coustani and other secondary vectors in both dry and wet seasons, despite substantial inter-annual variation in hydrological conditions. This marked temporal consistency of spatial distribution and anopheline community composition presents an opportunity to target predominant secondary vectors outdoors. Larval source management should be considered, alongside prevalent indoor-based approaches, amongst a diversification of vector control approaches to more effectively combat residual malaria transmission.
Funder
Natural Environment Research Council
Publisher
Springer Science and Business Media LLC
Reference97 articles.
1. Russell, T. L., Beebe, N. W., Cooper, R. D., Lobo, N. F. & Burkot, T. R. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar J. 12, 56. https://doi.org/10.1186/1475-2875-12-56 (2013).
2. Mouchet, J. et al. Biodiversité du paludisme dans le monde. (Editions John Libbey Eurotext, 2004).
3. Sougoufara, S., Ottih, E. C. & Tripet, F. The need for new vector control approaches targeting outdoor biting anopheline malaria vector communities. Parasit Vectors 13, 295. https://doi.org/10.1186/s13071-020-04170-7 (2020).
4. Antonio-Nkondjio, C. et al. Complexity of the malaria vectorial system in Cameroon: contribution of secondary vectors to malaria transmission. J. Med. Entomol. 43, 1215–1221. https://doi.org/10.1093/jmedent/43.6.1215 (2006).
5. Afrane, Y. A., Bonizzoni, M. & Yan, G. in Current Topics in Malaria Ch. 20, (2016).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献