Photoinduced damage of AsLOV2 domain is accompanied by increased singlet oxygen production due to flavin dissociation

Author:

Petrenčáková Martina,Filandr František,Hovan Andrej,Yassaghi Ghazaleh,Man Petr,Kožár Tibor,Schwer Marc-Simon,Jancura Daniel,Plückthun Andreas,Novák Petr,Miškovský Pavol,Bánó Gregor,Sedlák Erik

Abstract

AbstractFlavin mononucleotide (FMN) belongs to the group of very efficient endogenous photosensitizers producing singlet oxygen, 1O2, but with limited ability to be targeted. On the other hand, in genetically-encoded photosensitizers, which can be targeted by means of various tags, the efficiency of FMN to produce 1O2 is significantly diminished due to its interactions with surrounding amino acid residues. Recently, an increase of 1O2 production yield by FMN buried in a protein matrix was achieved by a decrease of quenching of the cofactor excited states by weakening of the protein-FMN interactions while still forming a complex. Here, we suggest an alternative approach which relies on the blue light irradiation-induced dissociation of FMN to solvent. This dissociation unlocks the full capacity of FMN as 1O2 producer. Our suggestion is based on the study of an irradiation effect on two variants of the LOV2 domain from Avena sativa; wild type, AsLOV2 wt, and the variant with a replaced cysteine residue, AsLOV2 C450A. We detected irradiation-induced conformational changes as well as oxidation of several amino acids in both AsLOV2 variants. Detailed analysis of these observations indicates that irradiation-induced increase in 1O2 production is caused by a release of FMN from the protein. Moreover, an increased FMN dissociation from AsLOV2 wt in comparison with AsLOV2 C450A points to a role of C450 oxidation in repelling the cofactor from the protein.

Funder

Agentúra na Podporu Výskumu a Vývoja

Horizon 2020 Framework Programme

Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3