Novel multi-mode shortwave broadcast transmitting antenna array

Author:

Yao Wang,Gao Huotao,Tian Ying,Lu Taoming,Zhang Xiaolin

Abstract

AbstractCurrently, shortwave broadcasting in the range of 5.9–26.1 MHz remains a relatively large blind spot within 900 km owing to the limitations of ionospheric characteristics. Reducing the emission frequency is a feasible approach for covering blind spots and improving broadcast performance. Thus, a new type of shortwave broadcasting antenna array capable of reducing the lowest emission frequency to 4.4 MHz is proposed in this paper. An electromagnetic simulation software is used to optimize the design. The simulation analysis shows that for the 4 × 4 multi-mode shortwave broadband transmitting antenna array, the gain obtained is 12–23.5 dB in the 4.4–27.4 MHz frequency band, and the VSWR for each mode is lower than 2.5. The radiation patterns at 5.9 MHz and 4.4 MHz on a vertical plane are compared, and the results prove that the radiation elevation angle of the new transmitting array increases significantly. The larger elevation angle and lower frequency ensure the enhancement of close-range coverage. A scale model prototype is fabricated and characterized, and the results of the measurement agree well with those of the simulations. It provides a theoretical basis and technical support for the improved design of broadband high-power shortwave broadcasting transmitting antenna systems.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Fundamental Research Funds for the Wuhan Maritime Communication Research Institute

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smart Antenna System for Wireless Communication: A Review;2022 International Conference on Advances in Computing, Communication and Materials (ICACCM);2022-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3