Seasonal and spatial patterns of eukaryotic phytoplankton communities in an urban river based on marker gene

Author:

Yang Jing,Lv Junping,Liu Qi,Nan Fangru,Li Bo,Xie Shulian,Feng Jia

Abstract

AbstractThe seasonal and spatial eukaryotic phytoplankton composition in the Fenhe River was investigated based on the 18S rDNA V4 region. The relationship between phytoplankton functional groups and environmental factors was explored to effectively capture the responses of these taxa to environmental gradients and their effects on ecosystem function. Our results indicated that the Chlorophyta and Bacillariophyta had higher relative abundance than other taxa, and their diversity and richness indices in spring were higher than those in other seasons. The linear discriminant analysis effect size (LEfSe) analyses detected that the potential seasonal biomarkers included Desmodesmus, Cyclotella, Pseudoschroederia, Discostella, Scenedesmus, Monoraphidium, and Nannochloropsis; the spatial biomarkers included Amphora, Neochloris, Hindakia, Pseudomuriella, Coccomyxa, Chloroidium, Scherffelia, Chromochloris, and Scotinosphaera. The systemic evolution and distribution characteristics of the first 50 representative sequences showed that the dominant genus included Desmodesmus in spring, Pseudopediastrum in summer, Mychonastes in autumn, and Monoraphidium in winter. Main seasonal variation of phytoplankton functional groups was as follows: spring (J + F + C + X1) → summer (J + F + X1 + X2) → autumn (J + F + X1 + C) → winter (X1 + J + B + X2). Pearson correlation, redundancy analysis, and variance partitioning analysis showed temperature and phosphate were the determining factors causing the changes of phytoplankton functional groups and community composition in the Fenhe River.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3