Magnetization process of a ferromagnetic nanostrip under the influence of a surface acoustic wave

Author:

Castilla David,Yanes Rocío,Sinusía Miguel,Fuentes Gonzalo,Grandal Javier,Maicas Marco,Álvarez-Arenas Tomás E. G.,Muñoz Manuel,Torres Luis,López Luis,Prieto José L.

Abstract

AbstractSurface Acoustic Waves (SAW) are one of the possible solutions to target the challenges faced by modern spintronic devices. The stress carried by the SAW can decrease the current required to achieve magnetic switching or domain wall movement by spin transfer torque. Although the last decade has produced very relevant results in this field, it is still important to study the effects of a SAW on the basic unit of many spintronic devices, a ferromagnetic nanostrip. In this work, we perform a complete set of measurements and simulations to characterize the magnetization process of a Ni nanostrip under the influence of a SAW. We find that the SAW increases the mobility and the depinning ability of the magnetic domain walls and consequently, promotes a sharper approach to saturation and substantially decreases coercivity. We have also found other two interesting effects. When the SAW has sufficient energy, is able to trigger irreversible transitions even before switching the direction of the external magnetic field. Additionally, we have found that the magnetization process depends on the direction of the travelling SAW.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3