Functional characterization of a manganese superoxide dismutase from Avicennia marina: insights into its role in salt, hydrogen peroxide, and heavy metal tolerance

Author:

Abedi Hamid,Shahpiri Azar

Abstract

AbstractAvicennia marina is a salt-tolerance plant with high antioxidant and antibacterial potential. In the present work, a gene encoding MnSOD from Avicennia marina (AmSOD2) was cloned in the expression vectors pET28a. The resulting constructs were transformed into Escherichia coli strains Rosetta (DE3). Following the induction with Isopropyl β-d-1-thiogalactopyranoside, the protein His-AmSOD2 was expressed but dominantly found in the insoluble fraction of strain R-AmSOD2. Due to detection of mitochondrial transit peptide in the amino acid sequence of AmSOD2, the transit peptide was removed and AmSOD2 without transit peptide (tAmSOD2) was expressed in E. coli and dominantly found in the soluble fraction. The enzyme His-tAmSOD2 exhibited a molecular mass of 116 kDa in native condition. Nevertheless, in reducing conditions the molecular mass is 28 kDa indicating the enzyme His-tAmSOD2 is a tetramer protein. As shown by ICP analysis there is one mole Mn2+ in each monomer. The Pure His-tAmSOD2 was highly active in vitro, however the activity was almost three-fold lower than His-AmSOD1. Whereas the high stability of the recombinant His-AmSOD1was previously shown after incubation in a broad range pH and high temperature, His-tAmSOD2 was stable up to 50 °C and pH 6 for 1 h. The gene expression analysis showed that the gene encoding AmSOD2 is expressed in root, shoot and leaves of A. marina. In addition, the results show that the expression in the leaves was enhanced after treatment of plant with NaCl, H2O2, Cd2+ and Ni2+ indicating the important role of MnSOD in the resistant mechanism of mangroves.

Funder

Iran National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3