Radular force performance of stylommatophoran gastropods (Mollusca) with distinct body masses

Author:

Krings Wencke,Neumann Charlotte,Neiber Marco T.,Kovalev Alexander,Gorb Stanislav N.

Abstract

AbstractThe forces exerted by the animal’s food processing structures can be important parameters when studying trophic specializations to specific food spectra. Even though molluscs represent the second largest animal phylum, exhibiting an incredible biodiversity accompanied by the establishment of distinct ecological niches including the foraging on a variety of ingesta types, only few studies focused on the biomechanical performance of their feeding organs. To lay a keystone for future research in this direction, we investigated the in vivo forces exerted by the molluscan food gathering and processing structure, the radula, for five stylommatophoran species (Gastropoda). The chosen species and individuals have a similar radular morphology and motion, but as they represent different body mass classes, we were enabled to relate the forces to body mass. Radular forces were measured along two axes using force transducers which allowed us to correlate forces with the distinct phases of radular motion. A radular force quotient, AFQ = mean Absolute Force/bodymass0.67, of 4.3 could be determined which can be used further for the prediction of forces generated in Gastropoda. Additionally, some specimens were dissected and the radular musculature mass as well as the radular mass and dimensions were documented. Our results depict the positive correlation between body mass, radular musculature mass, and exerted force. Additionally, it was clearly observed that the radular motion phases, exerting the highest forces during feeding, changed with regard to the ingesta size: all smaller gastropods rather approached the food by a horizontal, sawing-like radular motion leading to the consumption of rather small food particles, whereas larger gastropods rather pulled the ingesta in vertical direction by radula and jaw resulting in the tearing of larger pieces.

Funder

Universität Hamburg

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3