Zooarchaeology through the lens of collagen fingerprinting at Denisova Cave

Author:

Brown Samantha,Wang Naihui,Oertle Annette,Kozlikin Maxim B.,Shunkov Michael V.,Derevianko Anatoly P.,Comeskey Daniel,Jope-Street Blair,Harvey Virginia L.,Chowdhury Manasij Pal,Buckley Michael,Higham Thomas,Douka Katerina

Abstract

AbstractDenisova Cave, a Pleistocene site in the Altai Mountains of Russian Siberia, has yielded significant fossil and lithic evidence for the Pleistocene in Northern Asia. Abundant animal and human bones have been discovered at the site, however, these tend to be highly fragmented, necessitating new approaches to identifying important hominin and faunal fossils. Here we report the results for 8253 bone fragments using ZooMS. Through the integration of this new ZooMS-based data with the previously published macroscopically-identified fauna we aim to create a holistic picture of the zooarchaeological record of the site. We identify trends associated with climate variability throughout the Middle and Upper Pleistocene as well as patterns explaining the process of bone fragmentation. Where morphological analysis of bones from the site have identified a high proportion of carnivore bones (30.2%), we find that these account for only 7.6% of the ZooMS assemblage, with large mammals between 3 and 5 more abundant overall. Our analysis suggests a cyclical pattern in fragmentation of bones which sees initial fragmentation by hominins using percussive tools and secondary carnivore action, such as gnawing and digestion, likely furthering the initial human-induced fragmentation.

Funder

Russian Foundation for Basic Research

University of Manchester for Dean’s Award Scholarship

Royal Society

Seventh Framework Programme

H2020 European Research Council

Max Planck Institute for the Science of Human History

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3