Preparation of sisal fiber/polyaniline/bio-surfactant rhamnolipid-layered double hydroxide nanocomposite for water decolorization: kinetic, equilibrium, and thermodynamic studies

Author:

Negarestani Mehrdad,Tavassoli Soheil,Reisi Saba,Beigi Negar,Mollahosseini Afsaneh,Hosseinzadeh Majid,Kheradmand Asiyeh

Abstract

AbstractSisal fiber is a potent economical biomaterial for designing composites because of its low density, high specific strength, no toxic effects, and renewability. The present study utilized sisal fiber as a starting material and subjected it to modification to produce a sisal fiber/polyaniline/bio-surfactant rhamnolipid-layered double hydroxide nanocomposite material denoted as SF@PANI@LDH@RL. The composite was evaluated for its efficacy in removing reactive orange 16 (RO16) and methylene blue (MB) from aqueous solutions. The synthesized adsorbent was characterized by FTIR, XRD, and SEM–EDS techniques; these analyses indicated the successful modification of the sisal fiber. The primary factors, including contact time, adsorbent dosage, dye concentration, temperature, and pH, were optimized for achieving the most excellent adsorption efficiency. On the one hand, methylene blue removal is enhanced in the basic solution (pH = 10). On the other hand, reactive orange 16 adsorption was favored in the acidic solution (pH = 3). The highest adsorption capacities for methylene blue and reactive orange 16 were 24.813 and 23.981 mg/g at 318 K, respectively. The Temkin isotherm model, which proves the adsorption procedure of methylene blue and reactive orange 16 could be regarded as a chemisorption procedure, supplies the most suitable explanation for the adsorption of methylene blue (R2 = 0.983) and reactive orange 16 (R2 = 0.996). Furthermore, Elovich is the best-fitting kinetic model for both dyes (R2 = 0.986 for MB and R2 = 0.987 for RO16). The recommended SF@PANI@LDH@RL adsorbent was reused six consecutive times and showed stable adsorption performance. The results demonstrate that SF@PANI@LDH@RL is a perfect adsorbent for eliminating cationic and anionic organic dyes from aqueous media.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3