Use of waste fish oil biodiesel blended with aluminium oxide nanoparticle in IC engines: an experimental on performance, combustion and emission study

Author:

Thamarai Kannan B.,Sathish T.,Sathyamurthy Ravishankar,Erko Kuma Gowwomsa

Abstract

AbstractAlternate fuels are in great need as the world's natural resources are depleting with continuous consumption. Furthermore, with a continuous increase in the use of conventional fuel which emits a large number of harmful pollutants to the environment and thus increasing global warming, the need for alternative fuel is in great need. This investigation thus focused on the impact identification on the use of biodiesel from fish waste-based biodiesel [BDWFO (Bio-Diesel of Waste Fish Oil)] with Nanoparticles in single cylinder water cooled IC engine. The fish wastes in fish processing industries/fish markets are used to produce oil and its biodiesel is produced by the transesterification method. The individual BDWFO, Diesel, and blends of 20% of BDWFO were tested with the engine. Then another two combinations of fuel created 200 ppm of 40 nm Aluminium Oxide nanoparticles (AN) mixed with BDWFO, blends of 20% of BDWFO. These five fuels were considered to study the engine performance, combustion, and emissions from the exhaust. The experimental results confirmed the presence of aluminium oxide nanoparticles in BDWFO provides improved engine performance and reduced emissions from exhaust gas except for CO2.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3