Multiparameter laser performance characterization of liquid crystals for polarization control devices in the nanosecond regime

Author:

Marshall Kenneth L.,Kafka Kyle R. P.,Urban Nathaniel D.,Wallace Jason U.,Demos Stavros G.

Abstract

AbstractInteractions of liquid crystals (LC’s) with polarized light have been studied widely and have spawned numerous device applications, including the fabrication of optical elements for high-power and large-aperture laser systems. Currently, little is known about both the effect of incident polarization state on laser-induced–damage threshold (LIDT) and laser-induced functional threshold (LIFT) behavior at sub-LIDT fluences under multipulse irradiation conditions. This work reports on the first study of the nanosecond-pulsed LIDT’s dependence on incident polarization for several optical devices employing oriented nematic and chiral-nematic LC’s oriented by surface alignment layers. Accelerated lifetime testing was also performed to characterize the ability of these devices to maintain their functional performance under multipulse irradiation as a function of the laser fluence at both 1053 nm and 351 nm. Results show that the LIDT varies as a function of input polarization by 30–80% within the same device, while the multipulse LIFT (which can differ from the nominal LIDT) depends on irradiation conditions such as laser fluence and wavelength.

Funder

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3