Author:
Ponnusamy Sasikumar,Ali Hanan H.,Dutt Felisha,Rahman Saeed Ur,Salah Ahmad A.,Pipalia Mahek,Baier Robert E.,Arany Praveen R.
Abstract
AbstractCurrent biomaterials effectively replace biological structures but are limited by infections and long-term material failures. This study examined the molecular mechanisms of radio frequency glow discharge treatments (RFGDT) in mediating the disinfection of biomaterial surfaces and concurrently promoting cell attachment and proliferation. Dental biomaterials were subjected to RFGDT, and viability of oral microbial species, namelyStreptococcus mutants(SM),Streptococcus gordonii(SG),Moraxella catarrhalis(MC), andPorphyromonas gingivalis(PG), were assessed. Cell attachment and survival of a pre-odontoblast cell line, MDPC-23, was examined. Finally, mechanistic investigations into redox generation and biological signaling were investigated. Based on their compositions, dental biomaterials induced reactive oxygen species (ROS) following dose-dependent RFGDT. Reduced microbial viability was evident following RFGDT in the catalase-negative (SM and SG) species more prominently than catalase-positive (MC and PG) species. Cell adhesion assays noted improved MDPC-23 attachment and survival. Pretreatments with N-acetylcysteine (NAC) and catalase abrogated these responses. Immunoassays noted redox-induced downstream expression of a laminin receptor, Ribosomal Protein SA, following RFGDT. Thus, RFGDT-induced redox mediates antimicrobial and improves cell responses such as adhesion and proliferation. These observations together provide a mechanistic rationale for the clinical utility of RFGDT with dental biomaterials for regenerative clinical applications.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献