Machine learning in optimization of nonwoven fabric bending rigidity in spunlace production line

Author:

Sadeghi Mohammad Reza,Hosseini Varkiyani Seyed Mohammad,Asgharian Jeddi Ali Asghar

Abstract

AbstractSpunlace nonwoven fabrics have been extensively employed in different applications such as medical, hygienic, and industrial due to their drapeability, soft handle, low cost, and uniform appearance. To manufacture a spunlace nonwoven fabric with desirable properties, production parameters play an important role. Moreover, the relationship between the primary response and input parameter and the relationship between the secondary response and primary responses of spunlace nonwoven fabric were modeled via an artificial neural network (ANN). Furthermore, a multi-objective optimization via genetic algorithm (GA) to find a combination of production parameters to fabricate a sample with the highest bending rigidity and lowest basis weight was carried out. The results of optimization showed that the cost value of the best sample is 0.373. The optimized set of production factors were Young’s modulus of fiber of 0.4195 GPa, the line speed of 53.91 m/min, the average pressure of water jet 42.43 bar, and the feed rate of 219.67 kg/h, which resulted in bending rigidity of 1.43 mN $${\mathrm{cm}}^{2}$$ cm 2 /cm and basis weight of 37.5 gsm. In terms of advancing the textile industry, it is hoped that this work provides insight into engineering the final properties of spunlace nonwoven fabric via the implementation of machine learning.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3