A traffic light control method based on multi-agent deep reinforcement learning algorithm

Author:

Liu Dongjiang,Li Leixiao

Abstract

AbstractIntelligent traffic light control (ITLC) algorithms are very efficient for relieving traffic congestion. Recently, many decentralized multi-agent traffic light control algorithms are proposed. These researches mainly focus on improving reinforcement learning method and coordination method. But, as all the agents need to communicate while coordinating with each other, the communication details should be improved as well. To guarantee communication effectiveness, two aspect should be considered. Firstly, a traffic condition description method need to be designed. By using this method, traffic condition can be described simply and clearly. Secondly, synchronization should be considered. As different intersections have different cycle lengths and message sending event happens at the end of each traffic signal cycle, every agent will receive messages of other agents at different time. So it is hard for an agent to decide which message is the latest one and the most valuable. Apart from communication details, reinforcement learning algorithm used for traffic signal timing should also be improved. In the traditional reinforcement learning based ITLC algorithms, either queue length of congested cars or waiting time of these cars is considered while calculating reward value. But, both of them are very important. So a new reward calculation method is needed. To solve all these problems, in this paper, a new ITLC algorithm is proposed. To improve communication efficiency, this algorithm adopts a new message sending and processing method. Besides, to measure traffic congestion in a more reasonable way, a new reward calculation method is proposed and used. This method takes both waiting time and queue length into consideration.

Funder

Inner Mongolia University of Technology Research Fund Key Project

Inner Mongolia University of Technology Research project doctoral fund

National Natural Science Foundation of China

Natural Science Foundation of Inner Mongolia Autonomous Doctoral Fund

Inner mongolia basic scientific research expenses of universities and colleges

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3