Author:
Asgari Ghorban,Salari Mehdi,Molla Mahmoudi Mohammad,Jamshidi Reza,Dehdar Ali,Faraji Hossein,Zabihollahi Solmaz,Alizadeh Saber
Abstract
AbstractWastewaters discharged from different industries and hospitals may contain pharmaceuticals, especially dexamethasone (DEX). Thus, we applied the UV/H2O2 photocatalytic method in the presence of the MgO nanoparticles to remove dexamethasone from synthetic wastewater. Moreover, the effects of parameters such as pH (3–11), hydrogen peroxide concentration (1–8 mM), initial DEX concentration (5–30 mg/L), and catalyst dosage (0.01–0.2 g/L) during the reaction times (0–30 min) were investigated. Furthermore, the efficiency of UV/H2O2 in the presence and absence of catalysts was investigated. The photocatalyst is characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), and Fourier-transform infrared spectroscopy (FTIR) techniques. It was found that the removal rate was enhanced by decreasing pH and the initial dexamethasone concentration. The removal rate was enhanced somewhat with concentrations of hydrogen peroxide and MgO. In the case of UV/H2O2/MgO, 87% removal efficiency was achieved, under the optimal conditions: pH 3, contact time of 30 min, dexamethasone concentration of 20 mg/L, H2O2 of 0.5 mM, and UV radiation of 55 watts. The kinetic data indicated that the reaction followed the second-order kinetic model. The results showed that the UV/H2O2 photochemical process can efficiently remove dexamethasone from aqueous in the presence of a MgO catalyst, and the mineralization efficiency was reached at about 98%.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献