Author:
Ahmad Parvaiz,Raja Vaseem,Ashraf Muhammed,Wijaya Leonard,Bajguz Andrzej,Alyemeni Mohammed Nasser
Abstract
AbstractCadmium stress is one of the chief environmental cues that can substantially reduce plant growth. In the present research, we studied the effect of jasmonic acid (JA) and gibberellic acid (GA3) applied individually and/or in combination to chickpea (Cicer arietinum) plants exposed to 150 µM cadmium sulphate. Cadmium stress resulted in reduced plant growth and pigment contents. Moreover, chickpea plants under cadmium contamination displayed higher levels of electrolytic leakage, H2O2, and malonaldehyde, as well as lower relative water content. Plants primed with JA (1 nM) and those foliar-fed with GA3 (10–6 M) showed improved metal tolerance by reducing the accumulation of reactive oxygen species, malonaldehyde and electrolytic leakage, and increasing relative water content. . Osmoprotectants like proline and glycinebetaine increased under cadmium contamination. Additionally, the enzymatic activities and non-enzymatic antioxidant levels increased markedly under Cd stress, but application of JA as well as of GA3 further improved these attributes. Enzymes pertaining to the ascorbate glutathione and glyoxylase systems increased significantly when the chickpea plants were exposed to Cd. However, JA and GA3 applied singly or in combination showed improved enzymatic activities as well as nutrient uptake, whereas they reduced the metal accumulation in chickpea plants. Taken together, our findings demonstrated that JA and GA3 are suitable agents for regulating Cd stress resistance in chickpea plants.
Publisher
Springer Science and Business Media LLC
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献