SU-Net: pose estimation network for non-cooperative spacecraft on-orbit

Author:

Gao Hu,Li Zhihui,Wang Ning,Yang Jingfan,Dang Depeng

Abstract

AbstractThe estimation of spacecraft pose is crucial in numerous space missions, including rendezvous and docking, debris removal, and on-orbit maintenance. Estimating the pose of space objects is significantly more challenging than that of objects on Earth, primarily due to the widely varying lighting conditions, low resolution, and limited amount of data available in space images. Our main proposal is a new deep learning neural network architecture, which can effectively extract orbiting spacecraft features from images captured by inverse synthetic aperture radar (ISAR) for pose estimation of non-cooperative on orbit spacecraft. Specifically, our model enhances spacecraft imaging by improving image contrast, reducing noise, and using transfer learning to mitigate data sparsity issues via a pre-trained model. To address sparse features in spacecraft imaging, we propose a dense residual U-Net network that employs dense residual block to reduce feature loss during downsampling. Additionally, we introduce a multi-head self-attention block to capture more global information and improve the model’s accuracy. The resulting tightly interlinked architecture, named as SU-Net, delivers strong performance gains on pose estimation by spacecraft ISAR imaging. Experimental results show that we achieve the state of the art results, and the absolute error of our model is 0.128$$^{\circ }$$ to 0.4491$$^{\circ }$$ , the mean error is about 0.282$$^{\circ }$$ , and the standard deviation is about 0.065$$^{\circ }$$ . The code are released at https://github.com/Tombs98/SU-Net.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

National Social Science Foundation of China

New Century Excellent Talents in the University of Ministry of Education of China

Open Project Sponsor of Beijing Key Laboratory of Intelligent Communication Software and Multimedia

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3