FRD-CNN: Object detection based on small-scale convolutional neural networks and feature reuse

Author:

Li Wei,Liu Kai,Yan LinORCID,Cheng Fei,Lv YunQiu,Zhang LiZhe

Abstract

Abstract Most of the recent successful object detection methods have been based on convolutional neural networks (CNNs). From previous studies, we learned that many feature reuse methods improve the network performance, but they increase the number of parameters. DenseNet uses thin layers that have fewer channels to alleviate the increase in parameters. This motivated us to find other methods for solving the increase in model size problems introduced by feature reuse methods. In this work, we employ different feature reuse methods on fire units and mobile units. We solved the problem and constructed two novel neural networks, fire-FRD-CNN and mobile-FRD-CNN. We conducted experiments with the proposed neural networks on KITTI and PASCAL VOC datasets.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An improved multi-scale and knowledge distillation method for efficient pedestrian detection in dense scenes;Journal of Real-Time Image Processing;2024-07-06

2. RankDVQA: Deep VQA based on Ranking-inspired Hybrid Training;2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2024-01-03

3. Auswirkung von Vegetationsindizes auf die Weizenertragsprognose mithilfe raumzeitlicher Modellierung;Digitales Ökosystem für Innovationen in der Landwirtschaft;2024

4. Classification and identification of crop disease based on depthwise separable group convolution and feature fusion;Journal of Plant Diseases and Protection;2023-11-25

5. Comparative Study between KNN and CNN's Techniques for Kidney Stone Detection;2023 International Conference on Smart Computing and Application (ICSCA);2023-02-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3