Author:
Shi Xu,Wang Xiao,Neuwald Andrew F.,Halakivi-Clarke Leena,Clarke Robert,Xuan Jianhua
Abstract
AbstractDe novo transcriptome assembly from billions of RNA-seq reads is very challenging due to alternative splicing and various levels of expression, which often leads to incorrect, mis-assembled transcripts. BayesDenovo addresses this problem by using both a read-guided strategy to accurately reconstruct splicing graphs from the RNA-seq data and a Bayesian strategy to estimate, from these graphs, the probability of transcript expression without penalizing poorly expressed transcripts. Simulation and cell line benchmark studies demonstrate that BayesDenovo is very effective in reducing false positives and achieves much higher accuracy than other assemblers, especially for alternatively spliced genes and for highly or poorly expressed transcripts. Moreover, BayesDenovo is more robust on multiple replicates by assembling a larger portion of common transcripts. When applied to breast cancer data, BayesDenovo identifies phenotype-specific transcripts associated with breast cancer recurrence.
Funder
National Institutes of Health
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献