Superfluid density from magnetic penetration depth measurements in Nb–Cu 3D nano-composite films

Author:

Gupta Chandan,Parab Pradnya,Bose Sangita

Abstract

AbstractSuperconductivity in 3D Nb–Cu nanocomposite granular films have been studied with varying thickness for two different compositions, Nb rich with 88 at% of Nb and Cu rich with 46 at% of Nb. For both compositions, the superconducting transition temperature (Tc) decreases with decreasing film thickness. For any thickness, doubling the Cu content in the films decreases the Tc by about 2 K. To explore if phase fluctuations play any role in superconductivity in these 3D films, the superfluid stiffness (JS) of the films was measured using low frequency two-coil mutual inductance (M) technique. Interestingly, the measurement of M in magnetic fields showed two peaks in the imaginary component of M for both Nb rich and Cu rich films. The two peaks were associated with the pair-breaking effect of the magnetic field on the intra and inter-granular coupling in these films consisting of random network of superconductor (S) and normal metal (N) nano-particles. Furthermore, JS was seen to decrease with decreasing film thickness and increasing Cu content. However, for all films studied JS remained higher than the superconducting energy gap (∆) indicating that phase fluctuations do not play any role in superconductivity in the film thickness and composition range investigated. Our results indicate that an interplay of quantum size effects (QSE) and superconducting proximity effect (SPE) controls the Tc with composition in these 3D nano-composite films.

Funder

Science and Engineering Research Board

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3