Lesion site and therapy time predict responses to a therapy for anomia after stroke: a prognostic model development study

Author:

Hope Thomas M. H.,Nardo Davide,Holland Rachel,Ondobaka Sasha,Akkad Haya,Price Cathy J.,Leff Alexander P.,Crinion Jenny

Abstract

AbstractStroke is a leading cause of disability, and language impairments (aphasia) after stroke are both common and particularly feared. Most stroke survivors with aphasia exhibit anomia (difficulties with naming common objects), but while many therapeutic interventions for anomia have been proposed, treatment effects are typically much larger in some patients than others. Here, we asked whether that variation might be more systematic, and even predictable, than previously thought. 18 patients, each at least 6 months after left hemisphere stroke, engaged in a computerised treatment for their anomia over a 6-week period. Using only: (a) the patients’ initial accuracy when naming (to-be) trained items; (b) the hours of therapy that they devoted to the therapy; and (c) whole-brain lesion location data, derived from structural MRI; we developed Partial Least Squares regression models to predict the patients’ improvements on treated items, and tested them in cross-validation. Somewhat surprisingly, the best model included only lesion location data and the hours of therapy undertaken. In cross-validation, this model significantly out-performed the null model, in which the prediction for each patient was simply the mean treatment effect of the group. This model also made promisingly accurate predictions in absolute terms: the correlation between empirical and predicted treatment response was 0.62 (95% CI 0.27, 0.95). Our results indicate that individuals’ variation in response to anomia treatment are, at least somewhat, systematic and predictable, from the interaction between where and how much lesion damage they have suffered, and the time they devoted to the therapy.

Funder

Medical Research Council

The Stroke Association

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3