Genome-wide identification and characterization of parthenocarpic fruit set-related gene homologs in cucumber (Cucumis sativus L.)

Author:

Kaur Harleen,Manchanda Pooja,Kumar Pankaj,Dhall Rajinder Kumar,Chhuneja Parveen,Weng Yiqun

Abstract

AbstractCucumber (Cucumis sativus L.), a major horticultural crop, in the family Cucurbitaceae is grown and consumed globally. Parthenocarpy is an ideal trait for many fruit and vegetables which produces seedless fruit desired by consumers. The seedlessness occurs when fruit develops without fertilization which can be either natural or induced. So far, a limited number of genes regulating parthenocarpic fruit set have been reported in several fruit or vegetable crops, most of which are involved in hormone biosynthesis or signalling. Although parthenocarpic cucumber has been widely used in commercial production for a long time; its genetic basis is not well understood. In this study, we retrieved thirty five parthenocarpy fruit-set related genes (PRGs) from bibliomic data in various plants. Thirty-five PRG homologs were identified in the cucumber genome via homology-based search. An in silico analysis was performed on phylogenetic tree, exon–intron structure, cis-regulatory elements in the promoter region, and conserved domains of their deduced proteins, which provided insights into the genetic make-up of parthenocarpy-related genes in cucumber. Simple sequence repeat (SSR) sequences were mined in these PRGs, and 31 SSR markers were designed. SSR genotyping identified three SSRs in two polymorphic genes. Quantitative real-time PCR of selected genes was conducted in five cucumber lines with varying degrees of parthenocarpic fruit set capacities, which revealed possible association of their expression with parthenocarpy. The results revealed that homologs CsWD40 and CsPIN-4 could be considered potential genes for determination of parthenocarpy as these genes showed parental polymorphism and differential gene expression in case of parthenocarpic and non-parthenocarpic parents.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3