Transcriptomic responses of Aspergillus flavus to temperature and oxidative stresses during aflatoxin production

Author:

Tian Fei,Lee Sang Yoo,Woo So Young,Choi Hwa Young,Heo Seongeun,Nah Gyoungju,Chun Hyang Sook

Abstract

AbstractAflatoxin is a group of polyketide-derived carcinogenic and mutagenic secondary metabolites produced by Aspergillus flavus that negatively impact global food security and threaten the health of both humans and livestock. Aflatoxin biosynthesis is strongly affected by the fungal developmental stage, cultivation conditions, and environmental stress. In this study, a novel float culture method was used to examine the direct responses of the A. flavus transcriptome to temperature stress, oxidative stress, and their dual effects during the aflatoxin production stage. The transcriptomic response of A. flavus illustrated that the co-regulation of different secondary metabolic pathways likely contributes to maintaining cellular homeostasis and promoting cell survival under stress conditions. In particular, aflatoxin biosynthetic gene expression was downregulated, while genes encoding secondary metabolites with antioxidant properties, such as kojic acid and imizoquins, were upregulated under stress conditions. Multiple mitochondrial function-related genes, including those encoding NADH:ubiquinone oxidoreductase, ubiquinol-cytochrome C reductase, and alternative oxidase, were differentially expressed. These data can provide insights into the important mechanisms through which secondary metabolism in A. flavus is co-regulated and facilitate the deployment of various approaches for the effective control and prevention of aflatoxin contamination in food crops.

Funder

Bio-Synergy Research Project of the Ministry of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3