A biochemical network modeling of a whole-cell

Author:

Burke Paulo E. P.,Campos Claudia B. de L.,Costa Luciano da F.,Quiles Marcos G.

Abstract

AbstractAll cellular processes can be ultimately understood in terms of respective fundamental biochemical interactions between molecules, which can be modeled as networks. Very often, these molecules are shared by more than one process, therefore interconnecting them. Despite this effect, cellular processes are usually described by separate networks with heterogeneous levels of detail, such as metabolic, protein–protein interaction, and transcription regulation networks. Aiming at obtaining a unified representation of cellular processes, we describe in this work an integrative framework that draws concepts from rule-based modeling. In order to probe the capabilities of the framework, we used an organism-specific database and genomic information to model the whole-cell biochemical network of the Mycoplasma genitalium organism. This modeling accounted for 15 cellular processes and resulted in a single component network, indicating that all processes are somehow interconnected. The topological analysis of the network showed structural consistency with biological networks in the literature. In order to validate the network, we estimated gene essentiality by simulating gene deletions and compared the results with experimental data available in the literature. We could classify 212 genes as essential, being 95% of them consistent with experimental results. Although we adopted a relatively simple organism as a case study, we suggest that the presented framework has the potential for paving the way to more integrated studies of whole organisms leading to a systemic analysis of cells on a broader scale. The modeling of other organisms using this framework could provide useful large-scale models for different fields of research such as bioengineering, network biology, and synthetic biology, and also provide novel tools for medical and industrial applications.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Ministry of Science, Technology and Innovation | Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3