Predicting the central 10 degrees visual field in glaucoma by applying a deep learning algorithm to optical coherence tomography images

Author:

Asano Shotaro,Asaoka Ryo,Murata Hiroshi,Hashimoto Yohei,Miki Atsuya,Mori Kazuhiko,Ikeda Yoko,Kanamoto Takashi,Yamagami Junkichi,Inoue Kenji

Abstract

AbstractWe aimed to develop a model to predict visual field (VF) in the central 10 degrees in patients with glaucoma, by training a convolutional neural network (CNN) with optical coherence tomography (OCT) images and adjusting the values with Humphrey Field Analyzer (HFA) 24–2 test. The training dataset included 558 eyes from 312 glaucoma patients and 90 eyes from 46 normal subjects. The testing dataset included 105 eyes from 72 glaucoma patients. All eyes were analyzed by the HFA 10-2 test and OCT; eyes in the testing dataset were additionally analyzed by the HFA 24-2 test. During CNN model training, the total deviation (TD) values of the HFA 10-2 test point were predicted from the combined OCT-measured macular retinal layers’ thicknesses. Then, the predicted TD values were corrected using the TD values of the innermost four points from the HFA 24-2 test. Mean absolute error derived from the CNN models ranged between 9.4 and 9.5 B. These values reduced to 5.5 dB on average, when the data were corrected using the HFA 24-2 test. In conclusion, HFA 10-2 test results can be predicted with a OCT images using a trained CNN model with adjustment using HFA 24-2 test.

Funder

the Ministry of Education, Culture, Sports, Science and Technology of Japan

The Translational Research program; Strategic Promotion for practical application of Innovative medical Technology (TR-SPRINT) from Japan Agency for Medical Research and Development

the Japan Science and Technology Agency

Suzuken Memorial Foundation and Mitsui Life Social Welfare Foundation

Suzuken Memorial Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3