Investigating the turbulent dynamics of small-scale surface fires

Author:

Desai Ajinkya,Goodrick Scott,Banerjee Tirtha

Abstract

AbstractHigh frequency (30 Hz) two-dimensional particle image velocimetry data recorded during a field experiment exploring fire spread from point ignition in hand-spread pine needles under calm ambient wind conditions are analysed in this study. In the initial stages, as the flame spreads approximately radially away from the ignition point in the absence of a preferred wind-forcing direction, it entrains cooler ambient air into the warmer fire core, thereby experiencing a dynamic pressure resistance. The fire-front, comprising a flame that is tilted inward, is surrounded by a region of downdraft. Coherent structures describe the initial shape of the fire-front and its response to local wind shifts while also revealing possible fire-spread mechanisms. Vortex tubes originating outside the fire spiral inward and get stretched thinner at the fire-front leading to higher vorticity there. These tubes comprise circulation structures that induce a radially outward velocity close to the fuel bed, which pushes hot gases outward, thereby causing the fire to spread. Moreover, these circulation structures confirm the presence of counter-rotating vortex pairs that are known to be a key mechanism for fire spread. The axis of the vortex tubes changes its orientation alternately towards and away from the surface of the fuel bed, causing the vortex tubes to be kinked. The strong updraft observed at the location of the fire-front could potentially advect and tilt the kinked vortex tube vertically upward leading to fire-whirl formation. As the fire evolves, its perimeter disintegrates in response to flow instabilities to form smaller fire “pockets”. These pockets are confined to certain points in the flow field that remain relatively fixed for a while and resemble the behavior of a chaotic system in the vicinity of an attractor. Increased magnitudes of the turbulent fluxes of horizontal momentum, computed at certain such fixed points along the fire-front, are symptomatic of irregular fire bursts and help contextualize the fire spread. Most importantly, the time-varying transport terms of the turbulent kinetic energy budget equation computed at adjacent fixed points indicate that local fires along the fire-front primarily interact via the horizontal turbulent transport term.

Funder

University of California Laboratory Fees Research Program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference60 articles.

1. National Interagency Fire Center. National Fire News Year-to-Date Statistics (2021).

2. Curry, J. R. & Fons, W. L. Forest-fire behavior studies. Mech. Eng. 62, 219–225 (1940).

3. Fons, W. L. Analysis of fire spread in light forest fuels. J. Agric. Res. 72, 93–121 (1946).

4. Wagner, C. V. A simple fire-growth model. For. Chron. 45, 103–104 (1969).

5. Anderson, D., Catchpole, E., De Mestre, N. & Parkes, T. Modelling the spread of grass fires. ANZIAM J. 23, 451–466 (1982).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3