Author:
Miyamoto Kazuyuki,Nakamura Motoyasu,Ohtaki Hirokazu,Suzuki Keisuke,Yamaga Hiroki,Yanagisawa Kaoru,Maeda Atsuo,Yagi Masaharu,Hayashi Munetaka,Honda Kazuho,Dohi Kenji
Abstract
AbstractGlobal warming increases heatstroke incidence. After heatstroke, patients exhibit neurological symptoms, suggesting cerebellar damage. However, the potential long-term adverse outcomes are poorly understood. We studied the cerebellum after heatstroke in mouse heatstroke models. In this study, motor coordination disorder significantly appeared 3 weeks after heatstroke and gradually improved to some extent. Although white matter demyelination was detected at 1 and 3 weeks after heatstroke in the cerebellum, it was not found in the corpus callosum. The Purkinje cell numbers significantly decreased at 1, 3, and 9 weeks after heatstroke. The intensity of synaptophysin and postsynaptic density-95 temporarily appeared to attenuate at 3 weeks after heatstroke; however, both appeared to intensify at 9 weeks after heatstroke. Motor coordination loss occurred a few weeks after heatstroke and recovered to some extent. Late-onset motor impairment was suggested to be caused by cerebellar dysfunctions morphologically assessed by myelin staining of cerebellar white matter and immunostaining of Purkinje cells with pre- and postsynaptic markers. Purkinje cell number did not recover for 9 weeks; other factors, including motor coordination, partially recovered, probably by synaptic reconstruction, residual Purkinje cells, and other cerebellar white matter remyelination. These phenomena were associated with late-onset neurological deficits and recovery after heatstroke.
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献