A comparative analysis of linear regression, neural networks and random forest regression for predicting air ozone employing soft sensor models

Author:

Zhou Zheng,Qiu Cheng,Zhang Yufan

Abstract

AbstractThe proposed methodology presents a comprehensive analysis of soft sensor modeling techniques for air ozone prediction. We compare the performance of three different modeling techniques: LR (linear regression), NN (neural networks), and RFR (random forest regression). Additionally, we evaluate the impact of different variable sets on prediction performance. Our findings indicate that neural network models, particularly the RNN (recurrent neural networks), outperform the other modeling techniques in terms of prediction accuracy. The proposed methodology evaluates the impact of different variable sets on prediction performance, finding that variable set E demonstrates exceptional performance and achieves the highest average prediction accuracy among various software sensor models. In comparing variable set E and A, B, C, D, it is observed that the inclusion of an additional input feature, PM10, in the latter sets does not improve overall performance, potentially due to multicollinearity between PM10 and PM2.5 variables. The proposed methodology provides valuable insights into soft sensor modeling for air ozone prediction.Among the 72 sensors, sensor NNR[Y]C outperforms all other evaluated sensors, demonstrating exceptional predictive performance with an impressive R2 of 0.8902, low RMSE of 24.91, and remarkable MAE of 19.16. With a prediction accuracy of 81.44%, sensor NNR[Y]C is reliable and suitable for various technological applications.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3