Probabilistic projections of the stability of small tidal inlets at century time scale using a reduced complexity approach

Author:

Duong Trang Minh,Ranasinghe Roshanka,Callaghan David P.

Abstract

AbstractClimate change is widely expected to affect the thousands of small tidal inlets (STIs) dotting the global coastline. To properly inform effective adaptation strategies for the coastal areas in the vicinity of these inlets, it is necessary to know the temporal evolution of inlet stability over climate change time scales (50–100 years). As available numerical models are unable to perform continuous morphodynamic simulations at such time scales, here we develop and pilot a fast, probabilistic, reduced complexity model (RAPSTA – RAPid assessment tool of inlet STAbility) that can also quantify forcing uncertainties. RAPSTA accounts for the key physical processes governing STI stability and for climate change driven variations in system forcing. The model is very fast, providing a 100 year projection in less than 3 seconds. RAPSTA is demonstrated here at 3 STIs, representing the 3 main Types of STIs; Permanently open, locationally stable inlet (Type 1); Permanently open, alongshore migrating inlet (Type 2); Seasonally/Intermittently open, locationally stable inlet (Type 3). Model applications under a high greenhouse gas emissions scenario (RCP 8.5), accounting for forcing uncertainties, show that while the Type 1 STI will not change type over the twenty-first century, the Type 2 inlet may change into a more unstable Type 3 system around mid-century, and the Type 3 STI may change into a less unstable Type 2 system in about 20 years from now, further changing into a stable Type 1 STI around mid-century. These projections underscore the need for future adaptation strategies to remain flexible.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference56 articles.

1. Aubrey, D. G. & Weishar, L. (eds) Hydrodynamics and Sediment Dynamics of Tidal Inlets Vol. 29 (Springer, 1988).

2. Kjerfve, B. (ed.) Coastal Lagoon Processes (Elsevier Science, 1994).

3. Davis-Jr, R. A. & Fitzgerald, D. M. Beaches and Coasts (Wiley, 2003).

4. Woodroffe, C. D. Coasts: Form, Process and Evolution (Cambridge University Press, 2003).

5. FitzGerald, D., Georgiou, I. & Miner, M. Estuaries and tidal inlets. In Coastal Environments and Global Change (eds Masselink, G. & Gehrels, R.) 268–298 (Wiley, 2015).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3