Sex-linked markers in an Australian frog Platyplectrum ornatum (Limnodynastidae) with a small genome and homomorphic sex chromosomes

Author:

Schimek Chad,Shams Foyez,Miura Ikuo,Clulow Simon,Majtanova Zuzana,Deakin Janine,Ezaz Tariq

Abstract

AbstractAmphibians have highly diverse sex-determining modes leading to a notable interest in vertebrate sex determination and sex chromosome evolution. The identification of sex-determining systems in amphibians, however, is often difficult as a vast majority consist of homomorphic sex chromosomes making them hard to distinguish. In this study, we used Diversity Array Technology sequencing (DArTseq) to identify the sex-determining system in the ornate burrowing frog from Australia, Platyplectrum ornatum. We applied DArTseq to 44 individuals, 19 males and 25 females, collected from two locations to develop sex-linked markers. Unexpectedly, these 44 individuals were classified into two distinct population clusters based on our SNP analyses, 36 individuals in cluster 1, and 8 individuals in cluster 2. We then performed sex-linkage analyses separately in each cluster. We identified 35 sex-linked markers from cluster 1, which were all associated with maleness. Therefore, P. ornatum cluster 1 is utilising a male heterogametic (XX/XY) sex-determining system. On the other hand, we identified 210 sex-linked markers from cluster 2, of which 89 were male specific, i.e., identifying XX/XY sex determining system and 111 were female specific, i.e., identifying ZZ/ZW sex determining system, suggesting existence of either male or female heterogametic sex determining system in cluster 2. We also performed cytogenetic analyses in 1 male and 1 female from cluster 1; however, we did not detect any visible differentiation between the X and Y sex chromosomes. We also mapped sex-linked markers from the two clusters against the P. ornatum genome and our comparative analysis indicated that the sex chromosomes in both clusters shared homologies to chromosome 10 (autosome) of Rana temporaria and ZWY sex chromosome of Xenopus tropicalis. Our preliminary data suggest that it is plausible that the cluster 2 has a potential to be either male or female heterogamety in sex determination, requiring further investigation.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference45 articles.

1. Nishioka, M., Hanada, H., Miura, I. & Ryuzaki, M. Four kinds of sex chromosomes in Rana rugosa. Sci. Rep. Lab. Amphibian Biol. 13, 1–34 (1994).

2. Nishioka, M., Miura, I. & Saitoh, K. Sex chromosomes of Rana rugosa with special reference to local differences in sex-determining mechanism. Sci. Rep. Lab. Amphibian Biol. 1, 55–81 (1993).

3. Rodrigues, N., Merilä, J., Patrelle, C. & Perrin, N. Geographic variation in sex-chromosome differentiation in the common frog (Rana temporaria). Mol. Ecol. 23, 3409–3418 (2014).

4. Miura, I. Sex determination and sex chromosomes in amphibia. Sex. Dev. 11, 298–306 (2017).

5. Toups, M. A., Rodrigues, N., Perrin, N. & Kirkpatrick, M. A reciprocal translocation radically reshapes sex-linked inheritance in the common frog. Mol. Ecol. 28, 1877–1889 (2019).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3