Abstract
AbstractWe investigate the fundamental limit of radiative cooling of objects on the Earth's surfaces under general conditions including nonradiative heat transfer. We deduce the lowest steady-state temperature attainable and highest net radiative cooling power density available as a function of temperature. We present the exact spectral emissivity that can reach such limiting values, and show that the previously used 8–13 μm atmospheric window is highly inappropriate in low-temperature cases. The critical need for materials with simultaneously optimized optical and thermal properties is also identified. These results provide a reference against which radiative coolers can be benchmarked.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Elachi, C. & van Zyl, J. Introduction to the Physics and Techniques of Remote Sensing 2nd edn. (Wiley, New York, 2006).
2. Rephaeli, E., Raman, A. & Fan, S. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13, 1457–1461 (2013).
3. Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).
4. Hossain, M. M., Jia, B. & Gu, M. A metamaterial emitter for highly efficient radiative cooling. Adv. Opt. Mater. 3, 1047–1051 (2015).
5. Chen, Z., Zhu, L., Raman, A. & Fan, S. Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle. Nat. Commun. 7, 1–5 (2016).
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献