Medical imaging deep learning with differential privacy

Author:

Ziller Alexander,Usynin Dmitrii,Braren Rickmer,Makowski Marcus,Rueckert Daniel,Kaissis Georgios

Abstract

AbstractThe successful training of deep learning models for diagnostic deployment in medical imaging applications requires large volumes of data. Such data cannot be procured without consideration for patient privacy, mandated both by legal regulations and ethical requirements of the medical profession. Differential privacy (DP) enables the provision of information-theoretic privacy guarantees to patients and can be implemented in the setting of deep neural network training through the differentially private stochastic gradient descent (DP-SGD) algorithm. We here present deepee, a free-and-open-source framework for differentially private deep learning for use with the PyTorch deep learning framework. Our framework is based on parallelised execution of neural network operations to obtain and modify the per-sample gradients. The process is efficiently abstracted via a data structure maintaining shared memory references to neural network weights to maintain memory efficiency. We furthermore offer specialised data loading procedures and privacy budget accounting based on the Gaussian Differential Privacy framework, as well as automated modification of the user-supplied neural network architectures to ensure DP-conformity of its layers. We benchmark our framework’s computational performance against other open-source DP frameworks and evaluate its application on the paediatric pneumonia dataset, an image classification task and on the Medical Segmentation Decathlon Liver dataset in the task of medical image segmentation. We find that neural network training with rigorous privacy guarantees is possible while maintaining acceptable classification performance and excellent segmentation performance. Our framework compares favourably to related work with respect to memory consumption and computational performance. Our work presents an open-source software framework for differentially private deep learning, which we demonstrate in medical imaging analysis tasks. It serves to further the utilisation of privacy-enhancing techniques in medicine and beyond in order to assist researchers and practitioners in addressing the numerous outstanding challenges towards their widespread implementation.

Funder

Technical University Munich/Imperial College London Joint Academy of Doctoral Studies

UK Research and Innovation London Medical Imaging & Artificial Intelligence Centre for Value Based Healthcare

Klinikum rechts der Isar der Technischen Universität München

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3