Usefulness of semi-automatic harmonization strategy of standardized uptake values for multicenter PET studies

Author:

Daisaki Hiromitsu,Kitajima Kazuhiro,Nakajo Masatoyo,Watabe Tadashi,Ito Kimiteru,Sakamoto Fumi,Nakahara Tadaki,Ishibashi Mana,Toriihara Akira

Abstract

AbstractThis study assessed the possibility of semi-automatic harmonization of standardized uptake values (SUVs) in multicenter studies. Phantom data were acquired using 16 PET/CT scanners (including 3 PET/CT scanners with a silicon photomultiplier detector). PET images obtained using 30-min/bed scans for optimum harmonization filter calculations and using 90–180-s/bed scans for SUV validation under clinical conditions were obtained. Time of flight and a reconstruction method with point-spread function correction were allowed. The optimal full width at half maximum of the 3D-Gaussian filter that minimizes the root mean square error with the median value of the JSNM harmonization range was calculated semi-automatically. The SUVmax and the SUVpeak of the hot spheres were measured, and the inter-scanner coefficient of variation (COV) was calculated before and after harmonization. The harmonization filter was applied to 11 of the 15 PET/CT scanners in which the SUV calibration accuracy had been verified, but not in the remaining 4 scanners. Under noiseless conditions before harmonization, the inter-scanner COVs of the SUVmax and the SUVpeak were as high as 21.57% and 12.20%, respectively, decreasing to 8.79% and 5.73% after harmonization, respectively. Harmonization brought the SUVmax of all the hot spheres to within the harmonization range. Even under clinical conditions affected by image noise, the inter-scanner COVs for the SUVmax and SUVpeak were as high as 8.83% and 5.18% after harmonization, respectively. By applying an optimal harmonization filter that is calculated semi-automatically, the harmonization of SUVs according to the JSNM strategy is possible in multicenter studies, thereby reducing inter-scanner COVs.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3