Suppression of self-absorption in laser-induced breakdown spectroscopy using a double pulse orthogonal configuration to create vacuum-like conditions in atmospheric air pressure

Author:

Karnadi Indra,Pardede Marincan,Tanra Ivan,Hedwig Rinda,Marpaung Alion Mangasi,Lie Zener Sukra,Jobiliong Eric,Kwaria Dennis,Suliyanti Maria Margaretha,Ramli Muliadi,Lahna Kurnia,Lie Tjung Jie,Suyanto Hery,Kurniawan Koo Hendrik,Kagawa Kiichiro

Abstract

AbstractSelf-absorption, which is known to severely disturb identification of the emission peak intensity in emission-based spectroscopy, was first studied using ordinary single pulse laser-induced breakdown spectroscopy (LIBS). It was found that severe self-absorption, with an evident self-reversal, occurs in the resonance emission lines of high concentration Na, K, and Al, and thus it is impossible to obtain the linear calibration curve required for quantitative analysis. To overcome this problem, we introduce a double pulse orthogonal technique in which the first laser is fired in a parallel orientation at a varied distance of 2–6 mm from the sample surface. It is well known that the strong shock wave generated by this laser irradiation temporarily creates a vacuum-like condition immediately in front of the sample surface. This action is followed by a second laser irradiation oriented perpendicular to the sample surface. The sample ablated by the second laser irradiation expands following the shockwave excitation process in the vacuum-like air atmosphere created by the first laser. The obtained spectra of the resonance emission lines of high concentration Na, K, and Al are free from the self-reversal and weakly affected by the self-absorption effect. A linear calibration curve that intercepts near zero point for K element over a wide concentration range is also demonstrated in this study. This simple modification is considered notably helpful in overcoming the self-absorption that occurs in ordinary single pulse atmospheric pressure LIBS.

Funder

Indonesia Ministry of Research, Technology, and Higher Education

Third World Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3