Genetic variation of RNF145 gene and blood lipid levels in Xinjiang population, China

Author:

Ming Jing,Wei Xian,Han Min,Adi Dilare,Abuzhalihan Jialin,Wang Yong-Tao,Yang Yi-Ning,Li Xiao-Mei,Xie Xiang,Fu Zhen-Yan,Gai Min-Tao,Ma Yi-Tong

Abstract

AbstractDyslipidemia is one of the main risk factors for coronary heart disease (CHD). The E3 ubiquitin ligase which is encoded by the ring finger protein 145 (RNF145) gene is very important in the mediation of cholesterol synthesis and effectively treats hypercholesterolemia. Thus, the purpose of the present research is to investigate the connection between the polymorphism of the RNF145 gene and cholesterol levels in the populations in Xinjiang, China. A total of 1396 participants (Male: 628, Female: 768) were included in this study for genetic analysis of RNF145 gene, and we used the modified multiple connection detection response (iMLDR) technology to label two SNPs (rs17056583, rs12188266) of RNF145 genotyping. The relationship between the genotypes and the lipid profiles was analyzed with general linear model analysis after adjusting confounding variables. Through the analysis of the two SNPs in RNF145 gene, we discovered that both rs17056583 and rs12188266 were related to total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) concentrations (All P < 0.001). In addition, the association of rs17056583 and rs12188266 with lipid profiles concentrations is still statistically significant after multivariate adjustment of sex, age, smoking, obesity, drinking, diabetes, hypertension and lipid profiles. Meanwhile, we also found that rs17056583 was associated with high triglycerides concentrations before and after adjustment (All P < 0.001). Our study shows that both rs17056583 and rs12188266 SNPs of RNP145 gene are related to TC and LDL-C concentrations in Xinjiang population.

Funder

The National Natural Science Foundation of China-Major Project

Open project of Key Laboratory from Science and Technology Department of Xinjiang Uygur Autonomous Region

Science Foundation for Youths from Science and Technology Department of Xinjiang Uygur Autonomous Region.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3