Meiotic transmission patterns of additional genomic elements in Brachionus asplanchnoidis, a rotifer with intraspecific genome size variation

Author:

Blommaert Julie,Stelzer Claus-PeterORCID

Abstract

AbstractIntraspecific genome size (GS) variation in Eukaryotes is often mediated by additional, nonessential genomic elements. Physically, such additional elements may be represented by supernumerary (B-)chromosomes or by large heterozygous insertions into the regular chromosome set. Here we analyze meiotic transmission patterns of Megabase-sized, independently segregating genomic elements (ISEs) in Brachionus asplanchnoidis, a planktonic rotifer that displays an up to two-fold intraspecific GS variation due to variation in size and number of these elements. To gain insights into the meiotic transmission patterns of ISEs, we measured GS distributions of haploid males produced by individual mother clones using flow cytometry and compared these distributions to theoretical distributions expected under a range of scenarios. These scenarios considered transmission biases resembling (meiotic) drive, or cosegregation biases, e.g., if pairs of ISEs preferentially migrated towards the same pole during meiosis. We found that the inferred transmission patterns were diverse and ranged from positive biases (suggesting drive) to negative biases (suggesting drag), depending on rotifer clone and its ISE composition. Additionally, we obtained evidence for a negative cosegregation bias in some of the rotifer clones, i.e., pairs of ISEs exhibited an increased probability of migrating towards opposite poles during meiosis. Strikingly, these transmission and segregation patterns were more similar among members of a genetically homogeneous inbred line than among outbred members of the population. Comparisons between early and late stages of haploid male embryonic development (e.g., young synchronized male eggs vs. hatched males) showed very similar GS distributions, suggesting that transmission biases occur very early in male development, or even during meiosis. Very large genome size was associated with reduced male embryonic survival, suggesting that excessive amounts of ISEs might be detrimental to male fitness. Altogether, our results indicate considerable functional diversity of ISEs in B. asplanchnoidis, with consequences on meiotic transmission and embryonic survival.

Funder

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3