The neuronal-specific isoform of BIN1 regulates β-secretase cleavage of APP and Aβ generation in a RIN3-dependent manner

Author:

Bhattacharyya Raja,Teves Catarina Amelia Fidalgo,Long Alexandra,Hofert Madison,Tanzi Rudolph E.

Abstract

AbstractGenome-wide association studies have identified BIN1 (Bridging integrator 1) and RIN3 (Ras and Rab interactor 3) as genetic risk factors for late-onset Alzheimer’s disease (LOAD). The neuronal isoform of BIN1 (BIN1V1), but not the non-neuronal isoform (BIN1V9), has been shown to regulate tau-pathology and Aβ generation via RAB5-mediated endocytosis in neurons. BIN1 directly interacts with RIN3 to initiate RAB5-mediated endocytosis, which is essential for β-secretase (BACE1)-mediated β-secretase cleavage of β-amyloid precursor protein (APP) to generate Amyloid-β (Aβ), the key component of senile plaques in AD. Understanding the regulatory roles of BIN1 (neuronal BIN1V1) and RIN3 in β-secretase mediated cleavage of APP and Aβ generation is key to developing novel therapeutics to delay or prevent AD progression. Neuronal and non-neuronal isoforms of BIN1 (BIN1V1 and BIN1V9, respectively) were introduced with RIN3 into an in vitro cell-based system to test RIN3-dependent effects of neuronal BIN1V1 and non-neuronal BIN1V9 on β-secretase-mediated cleavage of APP and Aβ generation. Confocal microscopy was performed to examine RIN3-dependent subcellular localization of BIN1V1 and BIN1V9. Western blot analysis was performed to assess the effects of RIN3 and BIN1V1/BIN1V9 on β-secretase mediated processing of APP. We enriched cells expressing BIN1V1 without or with RIN3 via FACS to measure Aβ generation using Aβ ELISA assay, and to evaluate APP internalization by chasing biotinylated or antibody-labeled cell surface APP. Neuronal BIN1V1 containing the CLAP domain and non-neuronal BIN1V9 lacking the CLAP domain are the major isoforms present in the brain. Employing confocal microscopy, we showed that RIN3 differentially regulates the recruitment of both BIN1V1 and BIN1V9 into RAB5-endosomes. We further showed that BIN1V1, but not BIN1V9, downregulates β-secretase (BACE1)-mediated processing of APP in a RIN3-dependent manner. Overexpression of BIN1V1 also attenuated Aβ generation in a RIN3-dependent manner. Using cell-based internalization assays, we show BIN1V1, but not BIN1V9, delays the endocytosis of APP, but not of BACE1, into early endosomes, thereby spatially and temporally separating these two proteins into different cellular compartments, resulting in reduced cleavage of APP by BACE1 and reduced Aβ generation—all in a RIN3-dependent manner. Finally, we show that RIN3 sequesters BIN1V1 in RAB5-positive early endosomes, likely via the CLAP-domain, resulting in attenuated β-secretase processing of APP and Aβ generation by delaying endocytosis of APP. Our findings provide new mechanistic data on how two AD-associated molecules, RIN3 and BIN1 (neuronal BIN1V1), interact to govern Aβ production, implicating these two proteins as potential therapeutic targets for the prevention and treatment of AD.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3