TPMS-based auxetic structure for high-performance airless tires with variable stiffness depending on deformation

Author:

Kim Do-Yeon,Kim Hong-Seok,Kamath Sarath Suresh,Hou Xiangying,Choi Jae-Won,Park Sang-Hu

Abstract

AbstractA novel auxetic structure applicable to airless tire spokes is designed based on the primitive-type triply periodic minimal surface (P-TPMS) to have higher stiffness through deformation under compressive force. For becoming higher stiffness by deformation, an unit cell of auxetic structure is proposed and its characteristics according to design parameters are studied. Based on the parametric study, a rotated primitive-type auxetic structure (RPAS) is designed, and the deformative behaviors of an airless tire with the RPAS spokes are compared with a generally used honeycomb spoke. Simulation and experiment results show that the designed RPAS tire exhibits more stable behavior through higher rigidity depending on the deformation state when compressed on flat ground and obstacles. This variable stiffness characteristic of RPAS tires can be advantageous for shock absorption and prevention of large local deformations. Also, the manufacturability of the designed auxetic structure is evaluated using real rubber-based additive manufacturing processes for practical application in the tire manufacturing industry.

Funder

Korea Research Institute for Defense Technology Planning and Advancement

Korea Basic Science Institute

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3