Author:
Matsugo Hiromichi,Kitamura-Kobayashi Tomoya,Kamiki Haruhiko,Ishida Hiroho,Sekine Wataru,Takenaka-Uema Akiko,Nakagawa Takayuki,Murakami Shin,Horimoto Taisuke
Abstract
AbstractAlthough a canine adenovirus (CAdV)-based oncolytic virus (OV) candidate targeting canine tumors has been reported, its oncolytic effect could be attenuated by CAdV vaccine-induced neutralizing antibodies in dog patients. To circumvent this issue, we focused on the bat adenovirus (BtAdV) strain, which was previously isolated from healthy microbats. We previously showed that this virus replicated efficiently in canine cell lines and did not serologically cross-react with CAdVs, suggesting that it may offer the possibility of an OV candidate for canine tumors. Here, we tested the growth properties and cytotoxicity of the BtAdV Mm32 strain in a panel of canine tumor cells and found that its characteristics were equivalent to those of CAdVs. To produce an Mm32 construct with enhanced tumor specificity, we established a novel reverse genetics system for BtAdV based on bacterial artificial chromosomes, and generated a recombinant virus, Mm32-E1Ap + cTERTp, by inserting a tumor-specific canine telomerase reverse transcriptase promoter into its E1A regulatory region. The growth and cytotoxicity of this recombinant were superior to those of wild-type Mm32 in canine tumor cells, unlike in normal canine cells. These data suggest that Mm32-E1Ap + cTERTp could be a promising OV for alternative canine cancer therapies.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献