Author:
Zhao Zhangrong,Sui Xiaomei
Abstract
AbstractBecause the performance of giant magnetostrictive materials (GMMs) can vary at different temperatures, the positioning accuracy of a giant magnetostrictive actuator is affected by heat. In this work, a new simplified control strategy under compulsory water cooling is proposed to maintain a constant GMM temperature. Based on this strategy, a coupled turbulent flow field and temperature field finite element model is created for a GMM smart component. The model is simulated using COMSOL Multiphysics software version 5.3. Through simulations, the temperature field distribution of GMM smart components is analysed under different drive input currents and cooling water flow rates. Based on the obtained simulation results, a GMM intelligent component temperature control device is constructed. The experimental results are in good agreement with the simulation results; a thermostatic control effect is achieved in the thermostat of the giant magnetostrictive rod. Thus, the proposed temperature control strategy is proven effective via simulations and experiments.
Funder
National Natural Science Foundation of China
Scientific Research Plan of Beijing Education Commission
Research Topics of China Logistics Association and China Federation of Logistics and Purchasing
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献