Author:
Bai Ze,Tan Maojin,Shi Yujiang,Guan Xingning,Wu Haibo,Huang Yanhui
Abstract
AbstractResistivity low-contrast oil pays are a kind of unconventional oil resource with no obvious difference in physical and electrical properties from water layers, which makes it difficult to be identified based on the characteristics of the geophysical well logging response. In this study, the support vector machine (SVM) technology was used to interpret the resistivity low-contrast oil pays in Chang 8 tight sandstone reservoir of Huanxian area, Ordos Basin. First, the input data sequences of logging curves were selected by analyzing the relationship between reservoir fluid types and logging data. Then, the SVM classification model for fluid identification and SVR regression model for reservoir parameter prediction were constructed. Finally, these two models were applied to interpret the resistivity low-contrast oil pays in the study area. The application results show that the fluid recognition accuracy of the SVM classification model is higher than that of the logging cross plot method, back propagation neural network method and radial basis function neural network method. The calculation accuracy of permeability and water saturation predicted by the SVR regression model is higher than that based on the experimental fitting model, which indicates that it is feasible to carry out logging interpretation and evaluation of the resistivity low-contrast oil pays by the SVM method. The research results not only provide an important reference and basis for the review of old wells but also provide technical support for the exploration and development of new strata.
Funder
The Introduced Talent Fund of Anhui University of Science and Technology
The University Synergy Innovation Program of Anhui Province
National Natural Science Foundation of China
National Major Projects “Log Interpretation and Evaluation of Complex Oil and Water Layers”
Open project fund of State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献